Advanced Water Chemistry and Treatment, 11.9.1998

Please answer questions 1-4 (Munter) and 5-6 (Hirvonen) separate papers. (Maximum 36 p)

Prof. Munter's questions:

- 1. Ozone second order reaction rate constant with phenol is $k_2 = 103 \text{ M}^{-1}\text{s}^{-1}$. Phenol initial concentration in water solution is [Ph]o=0.05 M. Taking the dissolved ozone initial concentration $[0_3]_0 = 0.1$ M, calculate the residual concentrations of both components after 1 min of contact in solution. Take the initial stoichiometric ratio $n=1.0 \text{ mol } 0_3/\text{mol Ph}$.
- 2. Ozonized air is bubbled through a water layer in a semibatch laboratory reactor (D=10 cm; H=30 cm) with the flow-rate Q=1 l/min. Ozone concentration in the inlet gas in $[0_3]_0 = 25$ mg/l. Ozone absorption coefficient at 20 °C is α =0.3. Calculate and draw in a figure dissolved ozone saturation curves at its physical absorption (pH \leq 3) according to the relationships:

$$K_{L}a = 0.45 \times W_{G}^{0.6}$$

$$(K_{L}a \rightarrow s^{-1}) \qquad (W_{G} \rightarrow m/s)$$

$$\ln \frac{C_{L}^{*} - C_{L}}{C_{L}^{*}} = K_{L}a \times t$$

Taking now the ozone decomposition rate constant in the basic water solution $k_1 = 0.1 \text{ s}^{-1}$, calculate the same curve according to the relationship:

$$C_{_L} = C_{_L}^{\ \ *} \times (1 - e^{-K_{_L}a\times t})/\xi$$
 where $\xi =$ (1 + $k_1/\mbox{K}_La)$

How high is the saturation coefficient ζ of water solution now? ($\zeta = C_L/C_L^*$)

- 3. Determine the time required for the benzene concentration spilled in a shallow lake, to be reduced to 0 (= 100 % reduction) its initial value at 25 °C. Average lake depth is 1,5 m. Use the data in Table 7.1.
- 4. Two lakes $V_1=30\ 000\ m^3$ and $V_2=10\ 000\ m^3$ behave like CFSTRs. Initial BOD to the first lake is $50\ g/m^3$. $k_1=0.5\ d^{-1}$, $r_A=-k_1\ x\ BOD$, $Q=5000\ m^3/d$ of water. Calculate the outlet BOD_1 and BOD_2 of the both lakes.

Hirvonen:

- 5. Describe three examples of applications of ozone in drinking water treatment. (6 p)
- 6. You have wastewater stream containing biodegradable organic compounds, nitrogenous organics and ammonia. Treatment target is to purify water to be acceptable in terms of BOD-reduction, removal of possible pathogenic microorganisms and NH₄₊ Describe the effect of ozonation for achieving these treatment targets. Any need of some additional treatment steps? (6p)

TABLE 7.1 Evaporation Parameters for Various Compounds at 25 $^{\circ}$ C

COMPOUND	MOLECULAR MASS. g/mol	SOLUBILITY IN WATER. g/m ³	VAPOR PRESSURE. mmHg	K. m/hr
Alcanes				
n -octane (C_8H_{18})	114.0	0.66	14.1	0.124
2,2.4-trimethyl	1110	2.44	40.0	0.101
pentane(C_8H_{18})	114.0	2.44	49.3	0.124
Aromatics				
Benzene (C ₆ H ₆)	78.0	1780	95.2	0.144
Toluene(C_7H_8)	92.0	515	28.4	0.133
o -Xylene (C_8H_{10})	106.0	175	6.6	0.123
Cumene (C_9H_{12})	120.0	50	4.6	0.119
Naphihalene (C ₁₀ H ₈)	128.0	33	0.23	0.096
Biphenyl ($C_{12}H_{10}$)	154.0	7.48	0.057	0.092
Pesticides				
$DDT (C_{14}H_9Cl_5)$	354.5	0.0012	1 x 10 ⁻⁷	9.34 x 10
Lindane($C_6H_6Cl_6$)	291.0	7.3	9.4×10^{-6}	1.5 x 10 ⁻²
Dieldrin ($C_{12}H_8Cl_60$)	381.0	0.25	1 x 10 ⁻⁷	5.33 x 10
Aldrin $(C_{12}H_8Cl_6)$	365.0	0.2	6 x 10 ⁻⁶	3.72 x 10
Polychloinated biphenyls (PCBs)				
Aroclor 1242 (C ₁₂ H ₇ Cl ₃)) 257.5	0.24	4.06×10^{-4}	0.057
Aroclor 1248 (C ₁₂ H ₆ Cl ₄)		5.4×10^{-2}	4.94×10^{-4}	0.072
Aroclor 1254(C ₁₂ H ₅ Cl ₅)	326.5	1.2×10^{-2}	7.71×10^{-5}	0.067
Aroclor 1260 ($C_{12}H_4Cl_6$)		2.7×10^{-3}	4.05×10^{-5}	0.067
Other				
Mercury (Hg)	200.6	3×10^{-2}	1.3×10^{-3}	0.092

Source: Adapted from Ref. [7.14)